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Foreword

The first seven sections of this report contain brief, but

technical descriptions of research on numerical fluid mechanics

that has been carried out at Brown University under contract

with the Army Research Office. More detailed descriptions of

parts of that research are provided in six appendices.

The sections, except Section 8, are arranged in chronological

order according to when we began work on the various problems.

- At the start, three and a half years ago, the finite fluid

element method (Section 1) was the only one under consideration.

Things went badly with that method, and progress with its

implementation went far more slowly than we ever anticipated.

As a result, by the end of the first year, a second method, which

originally was developed for a check on results of the first,

had become by far the more promising of the two. Most of this

report (Sections 3-6) describes progress we have made with the

application of biased differences (Section 2) to a variety of

fairly difficult problems of numerical fluid mechanics. Finally,

in the last six months of the period covered by this report,

the major difficulties with finite fluid elements were overcome,

so it became possible to begin a comparison of the two methods

(Section 6). Preliminary indications are that both methods are

reliable, and both are considerably more efficient than a third

method with which they have been compared.

Section 7 is a report of progress with a boundary integral

method that is not closely related to the others except by being

numerical, and Section 8 is a description of the kinds of graphical

software we had to develop for interpretation of our numerical

computations.

The research reported here has been carried out by F. E. Bisshopp,

R. B. Caswell (principal investigators), E. W. Fleri, M. E. Michaud,

and T. G. McKee (research assistants in Applied Mathematics).
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1. Finite fluid elements.

As initially formulated, the finite fluid element method dealt

with localized distributions of mass, momentum and energy. The

mass density and momentum density of a fluid were represented as

N
p(_A't) ~ mi(t)fi(2E - _Xi(t))

1

N
pu(At) I. mi Xfi(x - xi)

1

with distribution functions in n = 1, 2 or 3 dimensions.

1 jEX 121a 2

f 
eI (,,,2)n/2

The equations of fluid mechanics were then used, along with least

square fitting of ti~e appruximations, to obtain ordinary differential

equations for the fluid element parameters mi(t), Zi(t) and ci(t).

A detailed description of the method is included in appendix A:

here we will report on two major difficulties and what has been

developed to overcome them.

In the course of our attempts to implement a finite fluid element

method we found first that the original formulation was simply too

complicated to be of practical value -- it was never successfully

employed for a two-dimensional flow. Instead, two-dimensional

flow has been treated by an algorithm that is based upon the

original one, but is greatly simplified as follows:

Simulation of the equation of continuity has been dropped in

favor of fixed particle masses, thus bringing the method

somewhat nearer to a particle-in-cell method. The basic

approximation is
N

p(x,t) ~ Z mif1 (x -

1

where the integral of f1 over all of 1, 2 or 3-dimensional space is

<f1) = 1.

--L ..I " " " ". . ... .... I.. .I I .. . ... .. .i . . .. . - -- ' -



The mass density at the center of the Ith element ts assigned

the (approximate) value

N
Pfi = P fm <f f P

t. i

where 2 - 40 2)

1 - - e (~4~f 2 + .2 ))n/ 2 e
<fifJ (11 (CI i +  J)

and the parameters ai that characterize element diameters are

adjusted to give an overlap of the it h element with 2, 6 or I

neighbors in 1, 2 or 3 dimensions. Some indication of ways to

assign the a's is given in appendix A, and further investigation

of the effect of that choice on accuracy of the method is still

in progress.

Motion of the centers of the elements is governed by the

approximation of the fluid momentum equation,

= P~ig(_)-(_P)i + (v*T)i

for viscous flow, or

Piii = PiE(_ i ) - (201 -(11)1i

for flow in a porous medium. The body force %(_1) has presented

no difficulty, and, for a barotropic fluid, it has been found

that an adequate approximation of the pressure gradient is

(.RP)i = P'(Pi ) (2Y P)i

where
N(VP)i= mJV <fjf *

Nm

<f ffJ
= I P i- ) 1
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A second difficulty with the Initial formulation was found in

the attempt to approximate the effect of viscous stress The

quadratic fitting of velocities outlined in appendix A gave a

rather poor estimate of the second gradients that appear in a

direct evaluation of (V'T)i. It has been found now that a

much better representation of viscous effects can be obtained

in terms of two estimates of first gradients. In the simplified

algorithm for viscous flow there is a viscous stress field

N
T(x,t) ~ tifi(x- 1 M(t))

and its divergence is approximated, similarly to Vp , as

N ).t
2 (- - <f f

The coefficients t1 are defined implicitly by approximate values

of the stress field as

N

T= tj <fif 1 ?

where

= i( p)( "u)i + I( pi)(( - ) - ( u1)T)

and (Vu)i is the outer product

N (Xz-xi )(_Vu) =2 1 0i 2+ 2i  <f f fJ1%

Investigation of performance of the 1 and 2-dimensional versions

of the simplified algorithm is still in progress. Results on sound

waves and shock waves will appear in the Ph.D. dissertaion of

E. W. Fleri, and he is scheduled to present a poster session on

the subject at the SIAM Meeting, Alexandria, Va., 5-7 June 1930.

~ ~ , -. . . . . ... .-... . . .,,,,lr



2. Biased differences.

The method of biased differences was originally formulated and

developed as a standby -- it was to be used for independent

checks of results of the finite fluid element method. As it

turned out, however, very few problems with it were encountered,

and its present state of development is considerably advanced

beyond that of the finite fluid element method. It has been

applied, with promising results, to relatively difficult problems

of 2 and 3-dimensional unsteady flow. In this section, we give

a detailed description of the application of the method to the

simple problem of Burgers' equation in one dimension.

Given

ut + uu x = VUxx,

the left-hand-side is a material derivative, i.e. the total

time derivative along a particle path defined by X = u(X(t),t),

and the mixed Eulerian-Lagrangian formulation of the Burgers'

equation is

X =u

U VU xx

By contrast with finite fluid elements that move along particle

paths, biased differences are defined on a grid that is fixed

in space and has the local skeleton,

X:U

uC ur

*t-k - vig uc VVr

* -h XCx+h

There are s'veral possibilities for defining the bias line

(approximate particle path in this case) and performing the



5

time integration to various orders of accuracy. By experiment

it has been found that the following relatively simple, low order

scheme gives quite reliable results.

1) -uc is taken to be the linear interpolation of vj(or vr)

and vc at a point x c

uc = v(-Xc- xj) +e(X c- c-)  (v>0

c h + h c  _

(X -xc ) ( c-Xc )
uc = V c -h + V r h (V c < o)

2) The bias line is defined by the forward difference

Xc x xc + k7uc, and elimination of Xc-xc gives

Uc 1 - v (v C> 0)
_ c

U~ ~ C- V>o

k- (v < 0)
1 + (v rvc)

3) The equation for u is approximated by a backward difference

in time and a central difference in space to give

-c (u+Ur2 uc) = uc

The low order integration scheme has a local truncation error

of O(k2) in its time integrations, but it has not been found

necessary to improve that by introduction of central differences.

An indication of how the combined forward and backward differences

behave like central differences is given in appendix B.



3. Two-dimensional unsteady flow

Introduction of body forces and application of biased differences

to 2 and 3-dimensional versions of Burgers' equation is straight-

forward and will not be discussed here. We turn now to the more

difficult problems of incompressible fluid mechanics. In mixed

Eulerian-Lagrangian form the equations of motion are

X =u

u = f - Vx + VAu

_-u = 0

where f is a specified body force, 7T is p/p , and v is the

kinematic viscosity.

As in the one-dimensional example, the grid is fixed in space,

u refers to a central node at time t, vc refers to the same node

at time t-k, xc is the position of a node, and x c is the position

at time t-k of the bias line that passes through xc at time t.

The local skeleton (in plan views) is
V

un -n

w u ue  v v v
w !c -e -w -c -e

Us (time t- c v

-s t) -s (time t-k)

The forward difference approximation,

xc = c + ku c

and linear interpolation for u now gives simultaneous linear
-c

equations for the two (or three) components of 1c. The equations

depend upon which quadrant (or octant) contains io and that is

decided by the signs of the components of vc* If both components

of v are positive, for example, a is in the third quadrant and,-c c net ofru and ,with subscripts 1 and 2 to denote components of u and v,
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- vle)) 1  + (v1  - v) 2C vlC

2c - v2e)Ulc + (1 + (v2c - v2s)) 2c =PC

This gives initial values, u, for the integration of the momentum

equation.

To find the velocity field, the momentum equation, is first
approximated by a backward time difference with no space differences

included yet:

u = u + k(f(xc ) - (Wi) c + V(Au) )-C -c -- C "

Then the central difference approximation of V-u = 0 = A-u
gives the pressure equation,

+ T 5 + e ~w 1 c fhl(-e) - flZw f2(ln) - f(S
ITu + 7 + 7e + 7w - 4 C h ( f 2 + 2

(le - U + Uln 1 u1

k+ 2 )

With values of ff determined by approximate solution of the Poisson

equation, central space differences in the time-integrated momentum

equation finally give

Ulc h + Ul + Ule + U1 W - 4Ulc)

= Ulc + kfl ke w
i (c +h 2

U2 c- \_( + u28 + u2e + u2w - 4u20)

2C + kf (xc \\  k Tn - 's
h 2

.-- -
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In practice, it has been found that the implicit equations

for ir and u at the nodes can be treated quite efficiently by

iterations, with starting values obtained from data at time t-k.

There remains, as always, the treatment of boundary conditions.

So far, only rectangular geometries with boundaries parallel to

a coordinate axis have been considered. At a southern boundary,

for example, with xc on the boundary V-u = 0 implies

U2(Xlc, x2c + y)~ u 2 (Y/h) 2

and

~ 2- 2 2n
h

At y = y-h the normal component of the momentum equation then

gives the pressure boundary condition,

7= 'Tu - jh(f2(~ '~~- u. + h(u2  U i)c "u" h~2(1xn) + f2(1, ) ) - h'u2; k ?n - 2n )

This too is implicit, and iteration has proved effective.

Appendix C is a description of an application of the method

to flow in a channel. The results obtained there compared

very well with results obtained by a far more elaborate finite

element method.
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4. Thermal convection

At this time the only three-dimensional unsteady flow that has

been simulated is thermal convection. The Boussinesq approxima-

tion for nearly incompressible fluids (i.e. liquids) is governed

by

X=u

U = - a(T - -'T >)E + vAu

T= KAT+ 

V-u = 0

where

nis L- + V --------- nearly constant density
Po

is - VV -- gravitational force and potential

a is the coefficient of thermal expansion

,(T? is the average temperature

* is the kinematic viscosity

K is the thermal diffusivity

the viscous dissipation, 4 , is usually negligible.

In essence, the approximation is derived by neglecting

compressibility everywhere but in the part of buoyancy that is

not derivable from a potential .

The biased difference scheme for these problems is a forward

difference of X = u to define a bias line followed by backward
differences for the momentum and energy equations, and again

k - . .. .. . . .. . . . ..A .. ... . . . ,, .. . .... . . .. . . , _ . .. .
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there is a Poisson equation for the pressure. Since initial

data u-c and Tc is used, it i preferable to solve the forward

difference equations for xc --- c instead of u c With directions

relative to central nodes defined as
A
x 3 ,U

w

/
/

/ x2 ,n

A
xl'e Id

V

the equations for displacements when the components of v are-c

all positive are

(1 +.( v) )6 + h(v1  -v1s)62  + .(lc-vld)63 = l

k(c-w6 + (1 + l(v2  Mva +6 hf (v cv~ )63 =

k(v3c-v 3 w)6 1 + hk(v 3c-v 3 s )62 + (1 + k(v 3 c-v 3d))6 3  kv3c

where 6 is x c-7. C Similar sets of equations define 6 in the

other octants.

Given 6 as above, the initial data for the backward differences

is 6 63g1 2 )-3
=Yc - (c-)-+ - (-c- - - (v-c-Vd

Tc = T - (TcT)L - (Tc-Ts)P9 - (Tc-Td 3

a t bacwarh ead)r

and the backward equations are:



T" h-(Te + T + T + T + Tu + Td - 6Tc)= T

c h_e -w n + +uu 8 d 6u c)

+~k((V

= +  - (Tc - <T>)]

- (e + 7w + ' + 7rT + 7u + Trd - w (v-) - - C.

Some results on thermal instability of a fluid heated from

below (the Benard problem) are given in appendix D.



5. Two phase flow

A considerable effort was devoted to the formulation of a

biased difference algorithm for flow of two immiscible liquids

in a porous medium. In its full generality the problem there

is rather complicated, but there is nothing in its structure

that precludes an application of the method to it. For the most

part, however, we have concentrated on a simplified version

where the sum of the volumetric flow rates of the 'wetting' and

'nonwetting' phases

U =Uw + U

is specified in advance to be an irrotational, incompressible

flow field. Then the ratio of the proportions of void volume

filled by the phases (saturation)

S(x,t) = Vw/(Vn + Vw)

is governed by the saturation equation,

s+ F'(s)u.vs = v. 9(s)vs.

In this case the forward difference for the bias line,

a - 2 + kF'(s(-x ))UC

is not so easily solved as before because the derivative of the

fractional flow rate, F'(s), is not a linear function of s. In

fact,

~s 2 s(1-s)
pt(s) ~(s2+ (1~s)2)2

is more typical of the kind of problems encountered in waterflooding

of oil producing reservoirs
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The case where F'(s) is given as above and o is constant has

been investigated in detail by Marion C Michaud In her Ph D

dissertation. The dissertation is included here as aDpendix

E: a shorter version for publication is being prepared
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6. Compressible flow

A start has been made on the nDplication of blased differences

to compressible flow, In the simple barotronic case

p =p
X--u

p -- - p!'u
u- • V u + T _ 2 V.u I).

u + - V + - - - 3- -

Comparisons of results in the one dimensional case have been

made between the finite fluid element method, a biased central

difference algorithm, and the biased forward-backward difference

algorithm.

The central difference algorithm is

X c = Xc + k( + )

(1 - k(7u)c

PC = PC ( + U -Uj))

Uc = [U c k((V-p) + 2h )

vk( (K) + (ui+ur))]/(l + v_)

h h

where bars denote linear interpolation at xc . Iteration is carried

out on all three equations in the sequence indicated above.

The much simpler forward-backward algorithm is

xc XC + kc

Pc = C + -L(ur - u))
C 2h r
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in which only the last two equations are iterated.

The forward-backward finite fluid element method that was

used is

Xi: Xi + 0-1

a -X i)2 (2 neighbors)

= I<ff J (1 and 2 neighbors)

(Vp) 2 ' (xJ-xI) I f > (2 neighbors)i iJ2 0
j+i

(x -xi
(Vu)1 = 2 ' 2 Ui <f f> (2 neighbors)

ti <fifi> : (Vu)1 - ['tj<fifj>
2pk IX-i

u 1 Ui - a42k(Vp)l 2 2 t <f f?

j i

in which the last three equations are iterated.

In simulations of one-dimensional sound and shock waves, all

three methods worked well; and we were led to conclude that

central time differences give no significant improvements over

the simpler methods. Computation times for the forward-backward

biased difference and finite fluid element methods were comparable

and significantly shorter than corresponding times for central

differences.

This work will appear in a Ph.D. dissertation by E. W. Fleri

(in preparation), and the two-dimensional version of the finite

fluid element method will also appear there.
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7. Vortex motion

In some problems of fluid mechanics, there is a boundary
integral method that can be used to formulate efficient numerical

methods. A particular example is the flow induced by a two-

dimensional region of constant vorticity, i.e.

8v 8u
Z- -y = w in R bounded by C

= 0 outside R

The solution of this problem for which u -- 0 as lxi -- is

u(X,Y,t ) I y Y dxdyR Ix - X12

v(X,Y,t) = Ix - dxdy

and this, in turn, can be transformed to the line integral

u(X,T) = - --. t In x - X Idx

For two-dimensional, incompressible flow dw/dt = 0 on particle
paths, so the motion of the boundary of R is governed by

X 2nJx - _Id(x-X) , X on C.
_ = -2--r C .. 9

The shift of the integration variable from x to x-X removes the
logarithmic singularity, for after an integration by parts on
the closed curve,

w(x - x)(x - dx
_x -- c IxX12
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The normal component of the velocity of the boundary point X is

,,. r'(- X)(- x)'dx
N.X = - 2

and the contribution to N'X at x=X is zero.

There are a number of ways to perform the numerical integration:
the one we have set up fits a periodic, cubic spline to the

curve x(e), i.e.
N4

x(e) aBi( (8) + O(h )

where Bi is the cubic B-spline and h is Jxi - Xi+ 1 I. The
derivative

dx=N .IBi(e)dO + O(h3de)

gives the tangent vector, the normal is obtained by rotation,

and the normal component of X is calculated in a consistent

approximation by Simpson's rule.

With one iteration of central differences for the time
integration (Huen's method) the algorithm performs well, but
we are not yet zctisfied with it. Further work on this subject

is planned.
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8. Graphics

Visualization of two and three dimensional flows creates

special problems and a need for special software that isn't

generally found in standard packages. Graphics functions we
developed for our own purposes include:

1) Standard plotting of rough graphs at a terminal or

better quality graphs on an X-Y plotter

2) Rough representation of direction fields and contour

maps at a terminal.

3) Contour maps on X-Y plotters.

4) The linear algebra (affine transformations and

catenations) of two-dimensional directed arcs.

5) The linear algebra of space curves, including orthographic
and stereographic projections and binocular pairs of

projections.

Item 4) was of such a general utility that it has now been

included in the public APL software library at Brown University.

Items 3) and 5) will probably be included in the public domain,

as well, but in any case, listings of any of our graphics

software functions are available on request.

The most challenging graphics problem was the generation of
contour maps. By comparison with other contour map algorithms

we have seen, our approach is somewhat different, and it appears

to be considerably more efficient. A description of the contour

map algorithm is included here in appendix F.
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Appendix A

Abstract

This paper contains the formulation of a numerical method

to treat one, two or three dimensional unsteady flow. The

method is closely related to the PIC method and finite element

methods. The elements (finite fluid elements) are localized

distributions of mass, characterized by mass, radius and position

in space. They move according to interactions between neighboring

elements that are derived from the fluid equations. Rough

estimates of the dependence of the accuracy of the approximation

on particle radii and the number of neighbors retained are

calculated.
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1. Introduction

This paper is devoted to the formulation of a numerical method

to treat one, two, or three-dimensional unsteady flow of a

barotropic, Stokes fluid. The generali-ation of the method to

treat an arbitrary compressible fluid will be deferred until the

present model has been implemented, and its worth as a practical

algorithm, appraised.

The method to be developed here is closely related to the

PIC method (Particle In Cell, Refs. 1-3), but in fact, the

two essential features of that method will both be treated somewhat

differently. The particles will not be treated as point-masses;

instead they will be taken to be localized distributions of mass

of finite extent, and as we shall see, they will be allowed to

overlap. The addition of another parameter, an effective radius,

for each particle allows another degree of freedom for optimiza-

tion, and thus an inherently more accurate representation of a

continuous density field by a finite set of localized particles.

The equations of motion of the particles are derived directly

from the equations of fluid mechanics, and the constitutive

relations of the fluid are modelled by providing appropriate

interactions between particles. Here, as in the PIC method,

closure of the dynamical system of particle motions is effected by

fitting mass and momentum density fields to provide a continuum

approximation of the motion of the particles. The system is

then closed by adopting the constitutive relations of the fluid

that is to be described. Instead of the fixed cells of the PIC

method, cells that move with the particles will be employed.
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Mass and momentum density in the neighborhood of each particle

will be defined by weighted averages, over the particle and its

neighbors, of the correspondingparticle attributes. This means

that the implementation of the method for two- and three-dimensional

flows will require the tabulation of a continually updated list of

the near neighbors of each particle. It does not appear that this

is a burden, however, since the major contribution to the weighted

averages comes from the six or twelve nearest neighbors in two or

three dimensions, respectively, and the updating can easily be

accomplished by periodically checking the positions of second

neighbors, which are easily assembled from the neighbors' neighbors.

The method is also closely related to the finite element

methods that have been used in continuum mechanics (Refs. 4,5).

However, two departures from the usual scheme of things will be

introduced: In the first place; the contiguous, nonoverlapping

elements, typically triangles or quadrilaterals in two dimensions

and tetrahedra and various prisms in three, will be abandoned in

favor of simpler elements, the finite particles, that fill space

in an additive way rather than by mutual exclusion; i.e. they

overlap. Thus the element parameters, nodal values, coefficients

of shape functions, etc., are replaced by particle attributes and,

as we shall see, cell attributes. The basic similarity between this

and other finite element methods is in the determination of the

particle and cell attributes by Galerkin's method where the

integrated square of the error of the finite approximation is

minimized.
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The second departure from other finite

element methods is that this one is entirely a Lagrangian

formulation: the velocity of each particle is among the attributes

to be defined by minimization of the error of the approximation.

The velocities are then to be integrated to find the positions of

the particles, thus giving a formulation that closely mimics the

fluid elements on which fluid mechanics is founded.

With the overlapping of particles and the use of Galerkin's

method to govern the coefficients of an additive covering of space,

the present method bears at least a superficial resemblance to

spectral methods that have been used in numerical fluid mechanics

(Ref. 6). In the spectral methods the 'elements'

are trigonometric functions and/or members of various sets of

orthog)nal polynomials, none of which are localized in space.

The entity that corresponds to an inner product (here denoted by

<f if>) is the integral over all space of the product of the ith

th
and j mass distributions. The normalization is different,
however; it is <fi> = 1 here. The matrix <I f > changes with time,

and even the location of the largest off-diagonal elements changes

in a shear flow; thus its inversion has to be done numerically.

Because of the localization of the particles, however, the major

off-diagonal contributions to the it h row come from relatively few

near neighbors of the ith particle.
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2. Fluid Equations

The fluid model, a barotropic, Stokes fluid includes some

features of compressible flow. Specifically, the gradient of

the pressure is retained in the momentum equation, but the

thermodynamics is simplified by taking the pressure to be a

function of density alone. The Stokes approximation defines stress

in terms of a single viscosity coefficient, also a function of

density, and the theory is closed without the need for an energy

equation. Enough of the complexity of a compressible fluid is

retained, so that the complementary functions of the particles

and the cells in the finite fluid element model can be fully

appreciated.

The equations that have a tensorial character will be given

twice, first in the cartesian tensor notation and then in an

abbreviated notation that will be used in later sections where

the subscripts will denote particle and/or cell number. The

cartesian tensor subscripts take on one, two or three values in

as many space dimensions, summation over repeated indices is

implied, and 6,j is one if i=j, zero otherwise.

Conservation of mass:

ap. + (Pu ) 0
t axi (

(1)
o+ V'(pu) = 0
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Momentum:
-t(PUt)+ Pu g

aax ax j(2 ~ (P1  +~--( ujui) -- pg1 + -- °j
(2)

(Pu)t + V"(puu) = pg + V'0

where g is a prescribed external force per unit mass, and the

stress (with Stokes' approximation) is

au au 2 u
G v (- I+ i - (-k)i )  P6

Ii ax axx ij 6 ij

(3)
= 2jUVu -(p + iI Vu)I.

Finally, for the barotropic model:

p p(P)
(4)

where the functions, p and p, are prescribed.
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3. Particle attributes

Just as in other finite element methods, the individual

elements, particles in this case, can be assigned an arbitrarily

complex internal structure. This leads to the usual trade-off:

the accuracy of the approximation can be improved either by

increasing the number of elements per unit volume or by augmenting

the internal complexity of the elements. The choice is by no

means a trivial one, for though the more complex elements

necessitate more equations to govern the values of their several

attributes, the greater separation of elements tends to allow

larger time-increments in the numerical integration of the

dynamical system. The question of improvement of the approxima-

tion will be deferred here, and the particles will be assigned a

relatively simple internal structure.

The particle approximation consists in the replacement of the

density field, p(x,t), by a set of N localized distributions of

mass, i.e.

(1) P - Emi(t)fi(x,t)

where the sum is from i=l to N. The identification of mi as the

total mass of the ith particle is effected by the conditions on

the distribution functions,

(2). <fi> = 1 i=l,...N,

where the angular brackets denote the integral over all space.
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Since the distribution functions represent the location of mass

within the particles, the location of the ith particle is the

mean value,

(3) Xi(t) = <xfi>,

and the effective radius of the ith particle is defined in terms

of the variance as

(4) ri(t) = <lx-Xi,2fi
> 1 / 2

If the attributes, mass, position and effective radius, are

accepted as a sufficient description of the particles, then a

particularly convenient choice of distribution functions is the

normal distribution,

1x 12 / 2

(5) fi(xt) ( n/2 e

where the value of n is 1, 2 or 3 in n space dimensions, and

(6) i(t) r W .i~ )

It may be noted that the first few moments, eqs.(2,3,4), are far

from sufficient information to determine the distribution functions;

the arbitrary and convenient choice of normal distributions relates

higher moments to the radius in ways that are particularly easy to

evaluate. A greater convenience, however, is the ease with which

several kinds of matrix elements that will be introduced in due

course can be evaluated explicitly. Thus, for exampl%*

See Sec. 6, Matrix elements.
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1 _xi j 21  2 2

(7) <fifj> = ea 2a2 )nI2( e

With the normal distributions, eq.(5), the mass of the ith

particle is distributed symmetrically about Xi(t), and the

approximation to the fluid momentum field that is consistent

with eq.(l) is,

(8) Pu - miXifi

where u(x,t) is the fluid velocity field. Clearly, Xi and X

cannot be specified independently, so to preserve the character

of the initial value problem for the fluid, the parameters,

mi  and Xi  are chosen to minimize the error of the approxima-

tions of eqs.(l & 8). For the particle approximation the error

will be taken to be the unbiased r.m.s. error,

(9) E 1 f 2 + 11pu/2mXf

P* < 2 I u-1 1 /2

where U* is a characteristic fluid velocity that has been intro-

duced to render eq.(9) dimensionally consistent, p, is a character-

istic fluid density, and [E 2  is volume. The choice of eq.(9)

is somewhat of a compromise, for though an unbiased relative error,

e.g.

2 2u-zmiX ril
(10) < I + 2

P 1Pul 2

might provide a better representation of the fields, the theory

that follows therefrom is much more difficult.
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The conditions to minimize E are:

p2E" . aE

(1)E _ > - Emj<fif>(i) * -i Pi j j mi Xi  ai

2 2
(12) i <puf i> - EimXj <fif> = 0

2

(13) p a3E (p-Emf )> + - 1 X i < (Pu-m X f)>= 0

i I U2 i

where
no 2

af 2 (I - I 2  - l i

(14) f ai = i - 2ii  - 23

Note that eq.(12) implies the vanishing of the corresponding term

of eq.(ll), and eqs.(ll and 12) allow the replacement of fi by

Ix-XiI2f, in eq.(13).

Now it may be noted that if the conditions of equation (13)

are retained, the result is a theory in which the a's are large,

the 'particles' are not localized, and near and far neighbors are

of equal importance in equations (11) and (12). Accordingly,

equation (13) will be dropped altogether, and in §7 estimates will

be given for choices of a's that minimize the error of truncated

approximations.

MwmkwJ
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4. Particle dynamics

Consider first eqs.(3.11,3.12):

(1) Em <fifj> = <Pfi >

(2) Em X <f f > = <Puf >

In the description of unsteady flow, the parameters, mi, Xi

and ai, are to vary with time, but in such manner that eqs.(1,2)

are preserved. Equations (1,2) can thus be regarded as constraints

on the particle dynamics; to see their effects, it suffices to

differentiate them to obtain

(3) (Em <f if >) = <Pfi> " = <pfi+fiPt >

(4) (EmjXj<fifj>) = <Pufi> = <Pufi+fi(PU)t>

The subscript, i, runs from 1 to N in eqs.(3,4), which can be

thought of as the mass and momentum transport laws of the particle

dynamics. The right-hand sides of eqs.(3,4) contain both particle

attributes and the fluid density and momentum fields; they are the

particle interactions that are to be determined presently by the

introduction of cells.

From the fluid eqs.(2.1,2.2) and eq.(3.14) it follows that

2
-2a 2 noI

(5) <Pfi> G3 <p(Ix-Xi1  2

- <PVfi> Xi - <fiV-Pu>
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22oi  nai

(6) <Puf>' = - i <pu(Ix-Xi 2 - i)fi >

- <puvf >.X i - <fIV.puu> + <f (pg+v.a)>

Clearly, eqs.(3,4,5,6) are incomplete, even if the mass and

momentum densities were known; there are only 2N relations for

the time derivatives of 3N particle attributes. The remaining

N equations can be obtained by differentiating the estimates of

ai(t) that will be given in §7, or eqs. (3,4,5,6) can be iterated

with oi = 0 in the leading approximation.

Some estimates of the relative importance of various terms

in eqs.(5,6) can be made as follows: Let it be supposed that the

Taylor series of the mass and momentum densities were known, i.e.

(7) P= Pi+(X-Xi)(Vp)i + (X-Xi)(x-Xi):(VVp)i +

(8) pu (pu)i+(x-Xi).(Vpu)i + 1(x-xi)(x-Xi):(Vvpu)i +...

where the subscripted quantities are evaluated at x = X . The

substitution of the ith Taylor series in the ith of eqs.(5,6),

an integration by parts of the matrix elements that contain Vfi,

and the results for normal distributions,*

2

(9S <Ix-Xi 2 f i> en i1 2

See Sec. 6, Matrix elements.



A12

(1) < 4fi >  n1 n 2 , 4(10) <Ix-xi = ( + 1

give the results,

The coefficients of the relative rates of change (ai/oi) are of

22

the order, 0(a ), and thus as the number of particles per unit

volume is increased, the error introduced by neglecting those

terms of eqs.(ll,12) vanishes as

(13) oa 2 0((V/N)2 /n) + 0

In the same limit, Uj approaches Xi as N/V becomes large, and

the major contributions to the particle dynamics are:

(11) (mf fif=>) + Pi(V'u)i 0

(12) (PuX >f f(I) + (PU)i(Vu)i * + (V'o)i

where, once again, the subscripts on the fields and their gradients

indicate evaluation at x = Xi(t).(13 a p (V/)2n
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5. Cells

From the results of the previous section it can be seen that

the least information about the fluid mass and momentum densities

that is needed to complete the particle dynamics approximately

includes the values at x = Xi, Pi and (Pu)i, the first derivatives,

(Vp)i and (Vpu)i, for the evaluation of (V.u)i, and the second

derivatives, (VVP)i and (VVpu)., for the evaluation of (Vo)i.

For that purpose then, cells are introduced to provide local

polynomial approximations where

(1) P ~ Pi + (x-Xi).(Vp)i + 7(x-Xi)(x-Xi):(VVp)i

(2) pu ~ (Pu)i+(-X-)'(Vpu)i + (x-Xl)(x-Xi):(VVpu)i

The subscripted quantities in eqs.(l,2) are not the fields and

their derivatives evaluated at x = X,, as in the previous section;

rather, they are the coefficients of quadratic approximations of

mass and momentum density fields that would be obtained if the

system 3f particles were treated, after the manner of the kinetic

theory of gases, in a continuum approximation. The process is

the reverse of kinetic theory, however, since it is the particle

interactions that are unknown here, and the mass and momentum

densities are to be found in order to adjust the particle inter-

actions to suit the thermodynamic properties of the fluid at hand.

The local quadratic approximations for the mass and momentum

densities are determined by minimization of the biased r.m.s. error,
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( 3 ) E i  _ < F i[ (  + (x x i) .(V p ) i+ 1, P i(x -X i) (x -X i) : (V v p ) i - m 2 +

1 1 -Ef +

+ U ((Pu)i+(x-Xi).(VPu)i+ 1(x (x-Xi):(VVpu)2 x-i)( -X2:(1 u1

- ZmjXjfj)2]>l/ 2

where Fi(x,t) is a localized weight function that is normalized,

(4) <Ft> = 1,

located at Xi(t),

(5) X i(t) = <xFi>

and has an effective radius,

(6) Ri(t) = <Ix-Xi 2Fi>I 2.

Again, for the ease with which matrix elements can be

evaluated explicitly, the weight functions are taken to be the

normal distributions,

(7) Fi(x,t) _ x2 n/2 - £

where n is the number of space dimensions and

(8) E (t) = 1 R (t).

This time, the quantities that enter in the conditions to

minimize Ei are the subscripted field quantities and Ei; the

conditions are:

(9) 0i + <(x-Xi)(x-X )F >:(VVp)i = <mj Flfj>



A15

(10) (pu) + 1 <(x-Xi)(x-Xi)F >:(VVpu) = <F fj >

(11) <(x-Xi)(x-Xi)Fi>(VP)i = Emj<(x-Xi)Fif >

(12) <(x-Xi)(x-Xi)Fi>'(Vpu)i EmX <(x-Xi)Fifj>

(13) <(x-Xi)(x-Xi)Fi>Pi + !-<(x-Xi)(x-Xi)(x-Xi)(x-Xi)Fi>:(Vvp)

=Emji<(XxXi)(x-X i)F ifji>
1

(14) <(x-Xi)(x-Xi)Fi>(PU) + 1 <(x-i)(x- )(x-Xi)(x-Xi)Fi>:(VVpu)

- EmjX <(x-Xi)(x-Xi)Fif >

and

(15) <Fi E(pi+(x-Xi)(Vp)i+ (x-X )(x-X ):(VVp) -m f ) 2

+ 1 ((Pu)i+(x-Xi)'(Vpu)i+ 1(x-X )(x-X ):(VVpu)

2Em iX 1fi)> = 0

where

3F n 2

(16) F E - E1 (fx-Xil 2 i 2 F "

In eqs.(9 to 14) the terms containing odd moments of Fi have

already been dropped; in the next section, further simplifications

that follow from the choice of normal distributions will be

derived.

The final condi-

tion, eq.(15) which governs the choice of cell radii to minimize

the error of the approximation, implies the inappropriate result,
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= O. Accordingly, it will be dropped, along with the corre-

sponding condition of eq.(3.13), and other estimates of both ai

and Ei will be given in the section on particle and cell radii.

Given the quadratic approximations for the mass and momentum

densities, the corresponding fluid velocity is

(17) u = ui+(x-Xi)'(Vu) i + 1(x-X)(x-Xi):(VVu) + O(Ix-Xi 3)

i (x-Xi)( i):V i)

where

(18) ui = (Pu)i/pi

(19) (Vu)i = ((Vpu)i - ui(Vp)i)/pi

and

(20) (VVu)i = ((VVpu)i-ui(VVp)i-(vu)i(Vp)i-(Vp)i(Vu)i)/Pi-

The thermodynamic quantities that appear in V'a are

(21) p ~ p(pi)+p'(Pi)(x-Xi)'(Vp)i +

+ (x-Xi)(x-Xi):(_p'(Pi)(VVP) +p"1(pi)(VP)i(VP) )

and

(22) j ~ U(P i) + I(pi)(x-Xi)'(Vp) i  +

+ (x-Xi(x-Xi(1'(pi)(VVo)i+]"(Pi)(VP)i(VP)
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6. Matrix elements

The choice of the normal distributions,
2 2

(1) f 1/Gi
i i

(ir OT )n-

1 _Ix-XiI
2 / 2

(2) Fi - en/2 e

xi)

leads to numerous simplifications of the several matrix elements

that have been introduced. Generally speaking, the simplification

of the tensorial character of the matrix elements is a consequence

of the choice of functions of Ix-Xij 2, and the relative ease with

which they can be evaluated is a consequence of the specific choice.

Consider first the right-hand side of eqs.(5.9 to 5.14):

The integral <Fifi> is of the same form as
(3) <fij-Ix-XiI 2 /a 2  -Ix-Xj2 /2

(3) 2 2n/2f ei e dx

and thp integral <Fifjfk> that will appear in the next section.

The integral of the product of any number of normal distributions

can be evaluated by introducing the 'center of mass',

(4) X = ( 1
2 2ai Ci

The exponent in the integrand is then

2 Ix-x2 IX-x1j 2  (X-Xi)

E 2 Ix-XI £  + 2 +2(x-X)'E 2

Gi  GI  ai Gi

The last term vanishes by the choice of X, the second term gives

the dependence on the coordinates Xi, and the integral of the first
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term gives the normalization. The result for the product of

two can be rearranged to give eq.(3.7) and

i- Ix xj 1 21/(E2+02
)

(6) <Fif > = 22 /2 e I
('T( E 1i+0j ) )

Likewise the result for the product of three normal distributions

can be rearranged in the form

(7) <Fifjfk> = 1--ik 2 2 2 2 2 n/2

E2I x -x 12+a I -XiI 2+02 1X -x 12 .

E2 2 2(2+)+Ca 2e i (j +k)+j k
e

The rearrangement of the general result is somewhat more tedious

than the direct evaluation of eq.(7) by completion of the square

in the exponent.

Next, in order of appearance, is

E2
(8) <(x-Xi)FifJ> <F fJ>

2
i2 (XjXI) <Fifi>

Ei+GJ2

and then

E2
(9) <(x-Xi)(x-Xi)Fifj > = - (<(x-XFf> + I<Fif>)

4
I (X -x)(xj-x 1 ) +

g22

+ t I <F I)2( 2 Flf 2
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where I is the unit dyad (equal 61j in cartesian tensor notation).

On the left-hand sides of eqs.(5.9 to 5.14) the matrix

elements are:

2

(10) <(x-Xi)(x-Xi)Fi> 2 I

and

(11) <(x-Xi)(x-Xi)(x-Xi)(x-Xi)Fi> E

where S Is the symmetric sum of outer products of unit dyads

that has the cartesian tensor representation,

(12) Sijki = 6ij 6k + 6ik6j9 + 6 i6 jk

The results (10,11,12) follow by the substitutions of (x-Xi) and

(x-Xi)(x-Xi)(x-Xi) for G(x) in the identity,
E2 E 2

(13) <(x-Xi)FiG> - 2 <VFiG> = - <F1 VG>

Contractions of (10,11,12) then give the results (4.9,4.10).

This completes the evaluation of matrix elements, except for

moments of <Fifjfk> that can be evaluated after the manner employed

for eqs.(8,9). With the simplification that follows from the

choice of normal distributions, eqs.(5.9-5.14) now are:

(14) p, + 1 E2(Ap) Emj <F fj>

(1) (Vp) i  2Em <F if >
l+j



A20

(16) piI + 1 E2((AP)iI+2(VVp)

=2 Emj( 2 (XXX) + I 212E 12 2 12 j + 12 2 ) <F IfJ>
zi +a J) 2( ( 1i+ j J)

From eq.(14) and the trace of eq.(16) it follows that

m 2

(17) (Ap) 4z ____ - 11) <F f >

I i i j

(18) Pi  Emj (l - ( Ix j-xI n <Ff>
-2- iii
i Y2 2 2 +T2 2 ) < i j

The corresponding relations between coefficients for pu are

identical except that m is everywhere replaced by mjXj.
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7. Particle and cell radii

At the end of §4 it was mentioned that the attempt to minimize

the unbiased error by choice of a's leads to a nonlocalized theory

in which the 'particle' radii are large. The result can be seen

by considering the 1-dimensional, uniform, periodic case where

p=l, -- < x < , the particles are equally spaced at Xi = i with

equal masses mi - m, and ai = a. Then

(1) E 2 = <(1-mfi)12>

and the relation between m and a is

__ -k2/2a 2
(2) <fi> = 1 = m <fif > m e

From equations (1,2) it follows (as in the derivation of Bessel's

inequality for orthogonal functions) that

(3) E2 = <1> - 2m E<fI> + m 2 EE <fi f >

= <1> - m2 E<fif >

= <l-m>

Since the particles are equally spaced the error per particle is

2 "D k2 12
(4) e = 1-m = 1 - /27 a/ E e /

-00

2
Figure 1 is a graph of e for 0 < a < 1, showing its decline to

zero as a - : the notable feature is the rapid approach of e2 to

negligibly small values. A similar phenomenon takes place in two

and three dimensions.

-- r-- - -
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Given that a's will be relatively small, the next question

is the truncation error associated with the approximate evaluation

of m's from

(5) <Pfi >  Z f >

<N J<

where the sum is over j=i and the N nearest neighbors of the ith

particle. In the uniform periodic case the m's and a's are equal,

p is 1, and the particles are at the integers in one dimension,

in a hexagonal lattice in two, and in one of the close-packed

lattices in three. In any case

(6) 1 = aN(a) E <fo f >
<N

(7) E = <1> -
2 mN E<fi> + m2 E E <fif >

=<i> E mN mZ 2 <fof >

O>N N 0

and the error per particle is

(8) e = Tn-riN(1-mN E <f f>)
>N o

where T is the volume per particle in the n-dimensional, closen

packed lattice, i.e.

(9) Tn =d, !1 d2 , -1 d 3  for n=1,2,3n 2 r

where d is the separation of nearest neighbors. Figures 2,3 and

2
4 are graphs of e for truncations that include first, second and

third neighbors, for various ranges of a. The separation of nearest

neighbors is set equal to one in all cases, and the three-dimensional,

close-packed lattice is face-centered cubic.
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A different measure of the accuracy of the truncated

approximations is given in Figures 5, 6 and 7, which are graphs

of T n-MN. The value of a at which MN = Tn is the one for which

mass is conserved, i.e. <p> = Emj. It should be noted, however,

that the value of a at which mass is conserved is systematically

less than that where e2 is minimized. By direct calculation, the

values of a for mass conservation with the nearest two, six and

twelve neighbors included are:

a
(10) d z 0.572, 0.498, 0.444 for n=1,2,3.

The corresponding errors per unit volume are:
2

e
(11) Tn dn 0.000311, 0.00887, 0.0258.

n

In the case where p is not constant and the particles are

not in a periodic array, a simple estimate of a i(t) is equation (10)

with

(12) di(t) - < IXj-XII/N
<N

where the sum is over nearest neighbors. Many other ways to

estimate a can be found, however, and the adoption of (12) may

be constdered as provisional. In any case, as the number of

particles per unit volume becomes large, 0i - 0 along with

d ,.and If P is differentiable, then equation (11) provides an

estimate of a local relative error

(P-Tm f ) 2
(13) < ( - mJ>f 22 >1/<l

p
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where <1> is the volume of a neighborhood of Xi that has a

diameter that is large, compared to di, and is small, compared

to the scale length P/I PV.

There remains now the question of the error in the cells.

The uniform, periodic case gives rise to double sums that are

relatively easy to evaluate in one dimension, rather more

difficult in two and three. The cell error Is

(P12 = <F (P j2>
(14) E0o <o(PN-mf

where

(15) PN = m Z<Ff> = 2£2 n/2 E eIXJ1 /(E +02

<N ((z2 +a)) <N

and again the sum is over the N nearest neighbors. From (14, 15)

it follows that

(16) E2 = m 2 E<Fffj> - 2m <F f.>),0 0 0 J> N(0N2m >N 0

and in the one dimensional case

(17) <F 0 f > 1 -(i-j) 2/2o2  -(i+j)2 /2(2E 2+y2)(1) <ofifj = e e

iraV2 2+a

Figures 8 and 9 are graphs of E 2() for various truncated
0

approximations. The two left-arguments of the function CLERR set

the number of neighbors retained in the particle and cell trunca-

tions, respectively. The particle mass is one in all cases, and

a is set equal to the value that conserves mass in the truncated

particle approximation. The appearance of phenomenal accuracy

as F 0 is to be disregarded since it refers to approximate

-'p. - - .
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calculation of density within the particle at X=O. Figure 8

approximates the untruncated cell over the range 0 < E < 1, and

indicates that cell error is limited by the error in the particle

approximation. Figure 9 shows the effect of truncation of the

cell approximation.

The final figure shows 1-pN (with m=l) in various approxima-

tions. The indication is that mass conservation provides a

reasonable estimate of a value of E for which truncation error

is relatively small and the density is not the density within a

particle. In the case where the number of neighbors retained

is the same for particles and cells, the estimate is

(1 ) i  = i .

A ,k ...I ....... . . .
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Difference Analogs of Hamiltonian Systems

Frederic Bisshopp
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Providence, Rhode Island 02912

Numerical integration of Hamiltonian systems brings forth

the question of whether or not the difference analogs have an

energy invariant that corresponds to the energy integral of

the differential equations. Several difference analogs of

the harmonic oscillator will be examined in that light, and

then generalizations will be given.

The differential equations,

x = p, p = -x, (i)

have the energy integral,

E = p2 + x (2)

Action-angle variables for the harmonic oscillator are J=2TE

and e, with

x = V cos(8-0), p 2- - sin(e-0o) (3)

and

= 1, J = 0. (4)

Even the simplest difference analog,

8k = kh, jk = Jo' (5)

gives exact values of the solution. The problem of interest
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here has to do with difference analogs of the primitive equations

(1).

Explicit difference analog:

Xk+l = xk+hPk' Pk+l = Pk-hxk (6)

defines the iteration,

p 0-h 1 h(7)

where the reversed arrow indicates new values that are assigned

when t t+h. The eigenvalues are 1 ± ih and their magnitude

is r,+h 2 . Thus the explicit analog is unstable'; its phase-

portraits spiral outward.

Implicit difference analog:

Xk+l-hPk+l = Xk' Pk+l +hxk+l =Pk (8)

defines the iteration,

()h2  1 h x (9)

The eigenvalues are (l±ih)/(l+h ) and their magnitude is

li//l+h 2 . The implicit analog is stable, but unsatisfactory

since its phase-portraits spiral inward.

Central difference analog:
Xk+l hPk+l = Xk + 1 hp k

+ 1 h 1 (10
Pk+l + hXk+l = Pk 2 hXk

L : - - - ... . . . . . . I I . . . . . ...
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defines the iteration,

1 +i h ~ h
p -h 4 h p

The matrix that transforms (x,p)T is a rotation, so

E = 1P2+x2) is an energy invariant of the central difference

analog. The only source of truncation error is in the phase

of the solution,

xk = /2 cos(kt-0), Pk= -'2E sin(kt-0), (12)

where

tan T = h/(l -1 h2 ). (13)

For the exact solution, T would be h, as in equations (3,5);

from equation (13)
T=h 1 h3 5

12h - h + 0(h 5 ) , lhi < 2. (14)

The attractiveness of the central difference analog is diminished

because it is an implicit scheme.

Leap-frog method:

xk+l = xk-l+ 2hPk' Pk+l = Pk-l-2hxk (15)

is a three-level, explicit, central difference scheme. It has

solutions of the form

' k  = k

Xk xo ' Pk PoX (16)

where
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X2_-1 2hX

=0. (17)
2h X 2_-1

The eigenvalues are solutions of X2= l-2h2-+2ih I -  and their

magnitude is 1 for IhI < 1. There is a well-behaved mode,

xk = /7T cos(kT- O), V h sin(k--)- (18)
k ) ksin T 0

and an ill-behaved mode,

( A h (-1) ksin (kTOo) (19)X k = A(-l)kcos(kT-e0)' Pk Asin T 0

where

tan 2T = 2h v/- /(-2h2). (20)

The phase error follows from

T = h + 1 h3 + 0(h5), Ihi < 1//Y , (21)

and, if the ill-behaved mode is suppressed, the energy invariant

of the leap-frog method is a close approximation of the energy

integral since h/sin T = l+0(h 4).

Flip-flop integration:

The explicit, two-level scheme,

Xk+l = xk+hPk' Pk+l+hxk+l =Pk (22)

defines the iteration,

(23)

p -h l-h p
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The eigenvalues are (2-h2±ih4--)/2, and their magnitude is

1 for Ihi < 2. The matrix that transforms (x,p) T clearly is

not a rotation, but an energy invariant can be found by

multiplying the second of equations (22) by (Pk+l+Pk)/2.

The result,

1 2 2
E = (Pk+hPkxk+Xk)

1 k 2 - h 2-((i + ) (Pk+Xk)2 + (1 - ) (PkXk)2) (24)

indicates that the solution lies on an ellipse at the angle

S0o-kT, where

tan r = hI4-h2/(2-h2) (25)

The phase error follows from

T = h + h3 + O(h 5), IhI < V2 (26)

By comparison, the flip-flop integration is best at

representing the phase of the oscillation, worst at representing

the energy integral. Nevertheless, it has an energy invariant,

and for the action-angle variables the relative errors are h 2/4

and h2/24, respectively, when (xoPo) = (xo, 0) or (O,p0 ). By

the more familiar reckoning, the relative error in the waveform

is of 0(h).

The principal advantages of the flip-flop integration are

that it is two-level and explicit, and it can easily be generalized

for some Hamiltonian systems. Consider first



B6

p, p = f(x) (27)

and the flip-flop integration

Xk+l = xk+hPk' Pk+l = Pk + hf(xk+l)" (28)

With one degree of freedom, f(x) is derivable from the potential

x

V(x) = - f f(z)dz, (29)

and, by the trapezoid rule,

V(Xk+l)-V(xk) = _ (f(Xk+l )+f(xk)) (Xk+lXk)

+ (Xk+l _Xk) (30)

where lies in (xk,Xk+l]. We define

E 1 2 1 h(1
Ek = 1 Pk - 1 hPkf(xk) + V(Xk)'(31)

and it follows from equations (28,30) that

Ek+I-Ek - h3 pf"( . (32)

It cannot be seen by this argument whether or not the flip-flop

integration has an energy invariant, but there is a near

invariant that confines phase portraits of solutions of the

difference equations to a neighborhood of the energy integral,

with relative errors of 0(h) for times as long as 0(1/h). A

possible drift of 0(h 2 ) for times of 0(l) is more or less

consistent with 0(h 2 ) errors in action-angle variables, and

again there are relative errors of 0(h) in the waveform of an

oscillation. It can be expected that equation (32) overestimates
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the drift per cycle of a nonlinear oscillation.

Now let us consider Hamiltonian systems defined by

H(x,p) = T(p)+V(x), where x and p are vectors. Let

EVT1. f VVI (33
gk - Tp=pk ' fk -- Vx=xk "*33

From the Taylor series of T and V, expanded about (xkPk) and

(Xk+lPk+l), it follows that

H(Xk+lPk+l)-H(Xk,Pk) = l(gk+gk+ I ) (Pk+l-Pk)

(34)

I (f +f )T (x x)+(IX-x13uj-_ k k+l k+lXk k+lXklPk+lPkl')

where 1&12 =T. It follows easily that there is a near

invariant (to 0(h3)) for either of the flip-flop integrations,

Xk+l = xk+hgk Pk+l = Pk+hfk+l '

1 (35)

k _ T(Pk)+V(xk) - 1 hgkfk,

or

Pk+l = Pk+hfk ' Xk+l = xk+hgk+l

(36)

k T(Pk)+V(Xk) + 1 hgkfk.

The argument fails for the general H(x,p).

As an example, the cubic nonlinear oscillator,

R + x= 0, (37)

has been simulated by flip-flop integration,
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[1] x - x + hp

[2] p - p hx3  (38)

[31 1

The results, as illustrated in the accompanying figure, suggest

that although the near invariant is not strictly conserved

there may be no systematic drift after all. The phase portrait

of approximately twenty cycles of the oscillation appears to be

confined to a band (probable width of 0(h 2)) centered about the

near invariant. The value of h in the computation is 0.5 -

for most, but not all values of h greater than a number near

0.75, the algorithm is unstable.

Figure caption:

Phase portrait, x vs. x for 0 < t < 125 in steps of 0.5.

Initial data: x(0) = 1, x(0) = 0.
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Appendix C: Flow in a channel by biased differences

The flow that is simulated here occupies a rectangle with

nodal coordinates

Y = MB, MM, ... , 2,1 (bottom to top)

X = 1, 2, ... , NN, NB (left to right)

The sets of indices that are used to define central nodes and

their neighbors are

Nl = 1, ... , NN-l

NO = 2, ... , NN

N3 = 3, .. ,NB

M2 = 1, ... , MM-l

MO = 2, ... , MM

M4 = 3, n.,M

Thus the correspondence between index-pairs and nodes is

Central - (MO,NO)

Western car- (MO,Nl)

Northern (M2,NO)

Eastern (MO,N3)

Southern - (M4,NO)

The input variable, u, and output, z, are 5 by MB by NB arrays

of values of u1 , u2, fl' fo and rat times t and t+k.. The parameter

Nu is actually vk/h2 Since length and time are measured in units of

h and k to eliminate unnecessary multiplications.

The first part of the program carries out the forward integra-

tion of X = u as described in Section 3 of this report. The

second and third parts are decoupled from one another in this

early version of the method because only the hydrostatic

component of the pressure boundary conditions has been included.
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Thus the boundary conditions are:

Western boundary (inflow)

7c = 7e - hf.(ac ) (hydrostatic)

-c = (constant, 0) (slug flow)

Eastern boundary (outflow)

= constant= constant 
(fully developed)uc = (UlwO )

Northern boundary (rigid)

7Cr =7r8 + hf2( Zc (hydrostatic)

U = (0,0) (no slip)
-c

Southern boundary (center line)

l c = 1Tn - hf2(Ac) (hydrostatic)

uc = (uln '0) (symmetric)

The last part of the program was added to correct for global

truncation error. At each station along the xl-axis u1 is

renormalized to preserve the constant total mass flux.

The initial condition was slug flow everywhere but at the rigid

boundary of an 11 by 31 node grid. The initial value of u1
and the inflow velocity were set at IA/v to insure that no

bias lines would fall outside local skeletons, and the body

force was set to zero. Nu (= vk/h 2 ) was set at 0.2, and after

15 time steps (CPU time, 12 sec.) the flow was almost at a steady

state. Figure 1 shows the profiles of u1 at the horizontal

stations 1, 3, 5, 7 and 9. The numbers above and below each graph

are the maximum and minimum values of uI . In figure 2 the same

profiles are shown after 10 more time steps. In figures 3 - 5

the value u. = 0 at the rigid boundary is not included and the
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scale is expanded to show detailed structure of the velocity

profiles. The progression of the point of maximum velocity

from edge to center as one moves downstream is consistent with

results of other numerical simulations and with results of

boundary layer theory.

[

- -- . .- . . .| - . . .. . . . . .. . II I .. . .. ...- i --. . . I I III-
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STATIONS 1,3,5,7,9 AFTER 25 TIME STEPS
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FIGURE 3: STATIONL; I TO 8 AFTEW 25 TIME STEPS
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FIGURE 4: STATIO/IW 9 T0 16 AFTER 25 TIME STEPS
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Appendix D: Thermal instability

The problem that was used to check the biased difference

algorithm for thermal convection was the B~nard problem. Thermal

instability of a horizontal layer of a fluid, heated from below,

is governed by the equations

Xu
A

= - y_+ agz(T - <T>) + vAU

V-u =0

T = KAT

where

= _.. + gz
Po

a is the coefficient of thermal expansion, g is the acceleration

of gravity, v is the kinematic viscosity, K is the thermal

diffusivity, and <T' is the mean temperature. The boundary

conditions that were used are

u = 0 all boundaries

T = To and T1 lower and upper boundaries

3T = 0 sidewalls

Two- and three-dimensional cases were implemented. For

simplicity we will discuss the two-dimensional case; the three-

dimensional algorithm is identical in form. Let the subscripts

1, 2 denote the components of x = (y,z), and let the subscripts

c, n, s, u, d denote central, northern, southern, upward, and

downward nodes in a rectangular grid. In the APL function TW1C

the 4 by M by N dimensional array U contains nodal values of

u, T and . North is to the right and up is up in the arrays;

the correspondence between index pairs and directions is
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Uc -. U[;MO;NO]

U 8 U[;MO;N1] N1 = NO-1

U u -* U [;M2;NO M2 = Mo-1

Un < U[;MO;N3] N3 = N1+2

U d -* U[;M4;NO] M = M2+2

The first part of the algorithm takes input values u, T, irat
time t (say); the parameters P = V, K, ag are not used until

later. The forward integration of X = u with time increment

k gives
--X +kU(Xc)

Ax -c

where x c is the position at time t of the bias line that passes

through xc at time t+k, and u still refers to time t. With

linear interpolation for u(X_) the displacement
Ac = xc + -

is given by the linear equations

(I + kM)6 = - kuc

where the space increment is h and

Ml (Un- uic)(ulc >0) + (ulc- Uis)(Uic <0))

12 h((Ulu- Ulc)(U2c >o) + (ulc- uld)(u2c <0))

M L ~ 0 (uu21 h ((un - u2c )(u lc >0) + (U2c- U2s)(Ulc <0))

M22 = l((u2u u2c)(u 2c >0) + (U2c- u2d)(u2c <0))

Note, the parenthetic expressions, (ui, <0) and (uic > 0) which

have logical values 0 or 1, are used to compute arrays of

coefficients of M in the APL function.
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Given arrays of 6 at the central nodes, the initial data for

velocity and temperature is

2 c =T c + mS
yec c+m6

where the vector m has components

m = !((Tn - Tc)(U1 c >0) + (Tc - T8 )(Ulc <0))

2= Tc)(U 2 c >0) + (Tc - Td)(U2c <0)).

At this point the approximation

(v'-)c = 2-h( in Uls + U 2 u - u2d)

is evaluated for use in the pressure equation.

The backward integration of the temperature equation defines

the iteration that initiates the second part of the algorithm

Tc c h n +  (T + Ts + Tu + Td))/(l + h k

Substitution of V u = 0 in the divergence of the backward time

Integration of the momentum equation gives the pressure equation--

also iterated

= ( 7 + Tr + IT + T + 2 'T- Td) -

The momentum equations,

Ulc 2h( kn ) + Uln+ l+ lu l)/(l + vk
h h

U2c = + kL(d- r u) + gk(Tc-'T)
2 ( 2c ?h d c

+2 (U 2 n+ U2s+ U2u+ U 2 d)]/( +
h h

L-. . . -e- .db -
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complete the algorithm at internal nodes.

The temperature is fixed (unchanged) at the top and bottom

boundaries, Tc = Tn at the south boundary and Tc = Ts at

the north. Both components of u are zero on all boundaries,

and the pressure boundary conditions are

Top:

r c = 7d+ jgh(T + Td- 2/T>) + hU2d+ h - 2 _ U2 dJ

Bottom:
fc = u r cgh(Tc+ T u 2<T)) - -L h u h 2u- u2u)-u U uh u - T-£ u-

North:
7Tc 7t+2v h= Fs + + Tk-(Uls - ul,c

South:
2 hTe c n - PLiU -- Uln

c n h -k.Ulnln

The small terms of d-(_ - u) were not included in the versions

of the algorithm that were used here.

Finally, the last part of the algorithm renormalizes horizontal

and vertical components of velocity to account for V.u = 0

globally, and sets the undetermined constant in the pressure

field at a convenient value.

The onset of thermal instability in a fluid layer of depth

d occurs at sufficiently high values of the Rayleigh number

R = agAd 3

KV

where AT is temperature at bottom minus temperature at top.

For an infinite layer bounded above and below by rigid boundaries

the critical Rayleigh number is 1708, and for R greater than

that convection appears. The fluid motion is in vortices

--
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with alternating clockwise and counterclockwise circulation

(rolls), and the width of a vortex is very slightly greater

than its depth, d.

In the simulations we have run, time and distance are

measured in units of k and h, i.e. At = Ax = 1. Thus an

M by N array of nodes has a width (N-1) and a depth (M-l),

and the Rayleigh number is

R = gAT(M -. 1) 3

KV

For the two-dimensional cases the grid is 11 by 30, K = v = AT = 1,
and ag is set at 2 or 4 to give Rayleigh numbers, 2000 or 4000.

Runs were started with a uniform temperature gradient and

small, randomly chosen velocity perturbation. Features of the

resulting steady states that developed are shown in Figures 1- 6.

In figures 1 - 3, R is 2000 and there are two weak primary

cells and a very weak secondary cell. This is in accord with

stability theory which predicts that neither two nor three cells

can fill a container with aspect ratio 3:1 at slightly super-

critical Rayleigh numbers. As far as we know, there is no

theoretical work that has predicted that the resolution of that

would be a secondary cell that is driven by the primary motion

rather than by buoyancy.

In figures 4 - 6, R is 4000 and no secondary cell is needed to

fill the container. This, incidentally, is about the limit of

what can be simulated with At = Ax. When a component of uk/h

exceeds one, the bias line falls outside the local skeleton,

interpolations become extrapolations, and the method begins to

be unreliable and possibly unstable.

Finally, a three-dimensional cell was simulated at Rayleigh

number 4000 in an 11 by 11 by 11 node container. The alignment

of the circulation with its axis on a diagonal in plan view

allows a cell that has a width that is slightly greater than

its height. Figure 7 is a plan view of the contours of w at z = 6
accompanied by elevation views of the direction fields of u

and w at y = 6 (below) and v and w at x = 6 (to the left ).

-I--- iiii J -. i i-I -.- -
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Altogether, biased differences appear to be a reliable and

effieibnt. way to simulate thermal convection. CPU time on

the IBM 370/158 at Brown University is 5 seconds per time step

of the three-dimensional simulation on 1331 nodes.
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Appendix F: Interactive generation of contour maps

The APL function CONTOUR will be described here. It takes
as input a rectangular array F of real numbers that can be

regarded as heights above a rectangular grid of nodes in the

x-y plane. The second input, H, is one or several values for

which one wants the level lines. The output, X, is a sequence

of coordinates X,Y,X,Y,...,-I,-l,X,Y,... of points on the level

lines. A pair of entries -l,-l within X signals the start of a

new contour line.

As always, there is the decision to be made whether the array

F represents nodal values of a function F(X,Y) or values of H

at positions in the array. CONTOUR does neither case: If F is

nodal values of F(X,Y) one must first take the transpose of F,

and if F is values of H above an array one must first reverse

the order of the rows of F. Thus

H CONTOUR 0 F (function)

or

H CONTOUR G F (array)

gives results in standard position with X increasing to the right,

Y increasing upward.

Contour map algorithms require a check for F = H at a node of

the array because the contour can have one or more branches there

(e.g. at a saddle point). The interactive aspect of the function

operates when such a point is found, and the user is required to

enter a perturbed value of H. Then, at a saddle for example,

or
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The function CHECK, called by CONTOUR, first checks F = H

at corners (nodes of the array); then introduces centers of

the rectangular patches where F is assigned the average of the

values at corners; then checks F = H at centers. Given F I H

at any corner or center of the now triangulated array, no

intersection or branching of contour lines is possible, and

the only decision left is whether a contour is closed and lies

within the array or open and terminates at an edge.

The function NODES finds nodes on the contour by linear

interpolation of values of F at corners and centers. The

output of NODES has four rows and as many columns as the

number of nodes on the contour. The first two rows are encoded

addresses of line segments that have a node, and the last two

rows are coordinates of the nodes. Finally, the function SORT

use the encoded addresses to arrange the nodes in order, checks

for open or closed contours, and returns the coordinates.

The logical structure of this algorithm is much simpler than

others we have examined, and, even in APL, it is considerably

faster than its FORTRAN competitors.

" -.. .. .. .. .... . . -m m --- i . . . . . . . . . .. I . . . . . .. .



F3

OCR 'CONTOUR'
X-Ji CONTOUR? F;iV;S;E;W;OIO
A X=XYX... 1,-1... 1, 1...YXY
A ON CONTOURS OF H=4F(XY) OR lISFCI;J]
A CALLS VX4-CHECK HV
A INDICES - NORTH,SOUTH, EAST, WEST ON OF
0104-0
N4-1*-i(pF)[ OJ-l
E-1+W-i(PF)E1]-1
X4-2+CHECK H

OCR'CHECK'
X4-CHECK H;Z";ZC
A EXTERNAL VARS F,11,S,E,W,DIO=O
A CALLS VX. SORT YV ARD VY-NODESV
A CHECK AND GO - ANY NUMBER OF CONTOURS

X-( CHECK H[0J),CECK 1+H1
-00
BGN:Z-F-H
A CONTOUR THROUGH A CORNER
-( A/A/fJC''< I Z)/OKI

~-'F',(v),'AT A CORNER - TRY H~l

A CONTOUR THROUGH A CENTER
OK1 :ZC-0-.25x,.IZS;W.Z[S;EJ,Z[a;E],[1.52 ZCN;WJ
-(A/LJC5Z< IZC)/0X2
bJ-F=',(Yll),' AT A CERTER - TRY 11='

-11GN
A NO CONTOUR
OK2:+)(V/V/4;eI+/xZES;WJ.ZES;E] ,ZEN;E] ,Ei. 5 Z[N;W] )/0K3
M.-'NO CONTOUR FOR H=',(vH),' -TRY H=l

OK3: X4-SO R2 OOD ES



OCR NODES'
Y+NODEI ;K ;X; V
A EXTERYAL VARS NSEWZ,ZC.I~O=O
A ADDRESSES AND POSITIONS OF NODES
Y4- 4 0 p0

A H-S NODES

X-(6xX).X-di(pN), 1+pC)TK
Y-Y,tX- 3,0.(V*(,ZENl;])CK]-V-(,Z[S;])EX).t0. 5] 0
A E-W iJODES
EW:.(=PK-(,(xZC;EJ)axZC;WJ)l(pE)xlepN)/SW
X4-(6xX) ,X-4( ( +pN), PE)TK
Y-Y,(4X-0, 3,0,[0.5) Vf(.ZC;EJ)LK]-V-(,ZE;W])K]
A SW-C NODES
SW;-e(0=PK-(xZC),xZS;W)l(PE)xpN)/SE
X4-( 6xX),X4( (PV),PE)TK
Y-Y.X- 2, 2,V,[0.5] V-V*2xZC[J-V-(,Z[S;W])LXJ
A SE-C NODES9
SE:4(O=pK&-((xZC)e,xZES;EJ)/t(pE)xpN)/NiE
X-(6xX),X-((pX)p 0 1)+X-4((pN).pE)TK
Y-Y,4X-2, 2, V. 0.5]-V-Vf2xZC[K]-V-( ,ZS;E]BEK]
A WE-C NODES
AE:4(0pX-((xZC);t,xi"tJ/;EJ)l(pE)xpNV)/NW

Y-Y,4X+ 2,-2,V,[0. 5] V*-V+2xZCCKJ-V-( ,ZEII,;EJ)[K]
A NW-C NODES
NWW:-kO0pK-((xZC);t,xZ[ll;WJ)l(pE)xpNi)I0
X-(6xX),X-((pX)P 1 0)+X-((pWi),pE)TK
Y-Y,diX*2,2,V[0.5-V-V+2xZC[K-V4-(.Z(WV;W])[K)
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UCR 'SORTI

A EXTERNAL VAR 1JIO=O
X4- 10
BGZI:M-iL-(pY)L 0]
A STARl.' WITH ZERO ARD ONE OR TWO NEIGHBORS
N~- 1O,(V/(.+IIELp0;]-I4-YE;0.1J)0.c 2 3)/Al
A CHIECK FOR ENDPOINT OR CLOSED CON!20 '-R
B :-( =PK-(K~Nl 1l) )/X+(v/ (*1 lILpi[J( .;i-1)o.= 2 3)114)/C

-END
C: N-4d

AFIND OTHER ENDPOIINT
D:N-(K(K~h1]/K~v/(III~pNo];~I~.:2 3)/M).N

4( 0,pX)/D
END:X-X,(,YN;3,2),2p1l
-*(L:5pN)/0
Y4-Y[( ifc)14;J
-B GN
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4. Biased Differences for Advection/Diffusion Problems.
(long version) Three working papers on this subject will
be rewritten as one or two papers to be submitted for
publication.

5. Biased Differences for Advection/Diffusion Problems.
(shot version) This was presented at the Gordon Con-
ference on Fluids in Permeable Media, Plymouth, New
Hampshire, June. 1978.

6. Computer Graphics Software.
This is now available in the APL software library at
Brown University.

by MARION MICHAUD

1. Numerical Simulation of Reservoirs.
Ph.D. dissertation, August 1979

2. Accurate Waterflood Simulation Using Biased Differencing
and Selective Grid Refinement.
Latest draft, March 1980. To be submitted for publication.
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by E. W. FLERI

1. A Lagrangian Finite Element Method. (probable title)
Ph.D. dissertation in preparation

7a. MANUSCRIPTS SUBMITTED OR PUBLISHED DURING THIS PERIOD
WITH PARTIAL SUPPORT UNDER ARO SPONSORSHIP:

byW. K. LYONS -

1. The Single Conservation Law of Discontinuous Media.
Ph.D dissertation, May 1980

by T. G. McKEE, Jr.

1. Instability and Bifurcation for Two-Dimensional Regions of
Constant Vorticity. (possible title)
Ph.D disseration in preparation.

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT DURING
THIS REPORTING PERIOD:

6/76 to 5/77 Summer Academic Year
Bisshopp, F. 2 mo. 9 mo.(10%)
Fleri, E. W. -- 9 mo.
Michaud, M. 1 ma. --

6/77 to 5/78
Bisshopp, F. 2 mo. 9 mo. (10%)
Fleri, E. W. 2 mo. 9 mo.
Michaud, M. 1.5 mo. --

6/78 to 8/79
Bisshopp, F. 1 mo. 9 mo.(10%)
Fleri, E. W. 3 mo. --

Michaud, M. 3 mo. 5 mo.
McKee, T. G 2 mo 9 mo.
Lyons, W. K. -- 5 mo.
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8a. DEGREES GRANTED DURING THIS REPORTING PERIOD:

MARION CATHARINE MICHAUD, Ph.D., June 1980.

WILLIAM KIMBEL LYONS, Ph.D., June 1980

8b. DEGREES EXPECTED FOR WORK SUPPORTED BY ARO:

E. W. FLERI, Ph.D. (June 1981)

T. G. McKEE,Jr., Ph.D. (June 1981)

9. RESEARCH FINDINGS

A two-volume technical report, dated 2 April 1980 and
submitted to the U. S. Army Research Office, contains brief
descriptions of our research on numerical fluid mechanics
in its first seven sections. More detailed descriptions of
parts of that research are provided in six accompanying
appendices.


